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ON ACOUSTIC BOUNDARY-CONTACT PROBLEMS FOR A VERTICALLY STRATIFIED MEDIUM 

BOUNDED FROM ABOVE BY A PLATE WITH CONCENTRATED INHOMOGENEITIES* 

I.V. ANDRONOV and B.P. BELINSKII 

An approach is proposed to the description of diffraction fields of 
acoustic waves in a vertically stratified medium covered from above by 
an elastic plate. There is a finite number of point of parallel linear 
inhomogeneities (cracks, concentrated masses and moments of inertia, 
etc.) on the plate. Analogous investigations were performed earlier for 
a homogeneous medium by using integral transformation techniques. The 
procedure for the numerical solution of one-dimensional differential 
equations should also be relied upon for the media under consideration. 

The boundary-value problem for the Helmholtz equation for whose formulation conditions 
must be given at individual points or on individual lines of the boundary (boundary contact 
conditions or BCC)** (**Belinskii B.P., On a Re.gularization Method in Diffraction Problems by 
Reinforce Plates. Doctoral Dissertation, Leningrad State University, 1986.) in addition to 
the boundary conditions, is called a boundary-contact problem of acoustics (BCP). An integral 
transformation technique was developed (/l/***(***See also Kouzov D.P., Boundary-Contact Problems 
of Acoustics (Plate-Fluid System). Doctoral Dissertation Institute of Acoustics, Moscow, 1986), 
etc.) that enabled the solution of a broad class of BCP to be constructed in quadratures. 
The fact that the boundary condition can be written (in terms of generalized functions) on the 
whole plate in the presence of just point (linear) inhomogeneities on the plate, but a linear 
combination of delta functions and their derivatives concentrated on the inhomogeneities occurs 
in the right side, is used here. By using the Fourier integral transformation method, it is 
possible to arrive at a field representation that contains coefficients of the above-mentioned 
linear combination (boundary-contact constants). To determine them one need only rely on a 
specific BCC on each inhomogeneity that fixes the mechanical mode thereon. Finally, a finite 
system of lienar algebra equations (BCS) is obtained for the boundary-contact constants. The 
BCP for a homogeneous medium in the presence of cracks or stiffness ribs on the plate /l-4/ 
were solved explicitly by the means described and were analysed physically in detail. 

From the viewpoint of applications, the transfer of the scheme described above to the case 
of an inhomogeneous fluid is of interest. This is done in this paper for a medium stratified 
according to depth by an example of cylindrical wave diffraction by a plate with cracks (the 
plane problem). A difference is noted in the energy transport mechanism as compared with a 
homogeneous medium. An optical theorem that is a convenient checking identity for the field 
computation is formulated for this model. A single-valued solvability of the BCS and a unique- 
ness theorem for solving it when there is no absorption in the medium and the plate are 
established. 

Let an acoustic half-space 
flexilb;y-vibrating plate 

(z> 0, --h‘ <z< K) be covered from above by a thin 
(Z :c 0, --03 < Z< -) weakened by a system of cracks (a 0, z au. 

tzm-I, . . ..N). The acoustic medium consists of a stratified layer of depth H under which 
there is a homogeneous bottom (z>ZZ). The pressure in the medium satisfies the Helmholtz 
equation 

(A + kz (z)) g (zr z) = 6 (r - ~0) 6 (z - 2,) (1.1) 

(6 (5) is the delta function), where it is assumed that z,<H. The equation becomes homo- 

geneous on the bottom, hence k (z) -: k,. Thecontinuity conditions 

[g (5, H)l == 0, g’ (x, H - 0) ~~ x-‘g’ (x, H + 0). x = pJp (1.2) 

are satisfied on the surface of the bottom. Here and henceforth u (to)1 is the jump in the 
function f(t) at the point t = t,, the prime denotes a derivative with respect to the 
argument Z, and P and ~1 are the layer and bottom densities. The boundary condition on the 
plate has the form /l/ 
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(1.3) 

ko4 - poVD, v -= pdlD 

Here C,j are the boundary-contact constants, ~_t is the plate mass per unit length, D is 
the cylindrical stiffness, and o is the frequency. The solution is understood in the sense 
of the limit absorption. 

The boundary-value problem (1.1)-(1.3) is supplemented by some kinds of BCC at the in- 
homogeneities. We will present just two examples. 

Crack: the BCC are, when there are no transverse forces and no bending moment at the crack 
edges (x = a, _* 0) /l/ 

(1.4) 

Stiffness rib or hummock: the BCC are derived from the equations of motion of a body 
attached rigidly to the plate at the point I = a, /3/ 

D Ia%’ (a,, oyax31 -: Mo~g’ (a,, 0) (1.5) 

D [Pg’ (a,, 0)/&5I == --J&& (an, O)!&z 

Here M, J are the rib mass and the moment of inertia with respect to the axis passing 
through the point of fastening to the plate. It is assumed here that kinematic continuity 
conditions are satisfied 

Vg (an, 0)/8sl = lg' (a,, 0)l = 0 (1.6) 

2. To be specific, the BCC case (1.4) is examined below. The solution is constructed 
by analogy with the case of a homogeneous half-space (k(z) = k,, p -s pI) by using the Fourier 
transform. The field g, that occurs when there are no cracks is extracted (to be specific 
we assume 2 -=z 20) 

Here and henceforth the absence of limits of integration means 
the whole axis, q. and *I are solutions of the "depth" equation 

9" + (k2 (z) - h2)t$ =- 0 

satisfying the boundary conditions 

(aa - k,4) l&’ (0, a) + v* (0, h) -= 0 

$’ flu, h) + x-’ +‘-A= - kcly) (if, A) = 0 

that it is performed over 

(2.2) 

(2.3) 

respectively, and W($,,ql) is their Wronskian. The first of conditions (2.3) occurs because 
of the Fourier transformation of the homogeneous boundary condition (1.3), and the second 
because of the continuity conditions (1.2), taking the explicit solvability of (2.2) of the 
bottom into account 

Q1 (z, h) -= & (H, h) exp {-t/P - ki2 (z - If)}, z > H (24 

The scattered field g, will be sought in the form of a Fourier integral with unknown 
density p(k) 

(2.5) 

1 (h) = (a4 - ko4) VI’ (0, v -t- 4; (0, Ir_) 

(the symbol of the boundary operator (1.3) is introdued here). The representation (2.5) is a 
natural extension of the field representation in the case of a homogeneous half-space when the 
function 4% (r, N is determined from (2.4) with H -0 /l-3/ (see also the papers mentioned 
in footnotes 1 and 2). The field g, satisfies the homogeneous Helmholtz equation and con- 
ditions (1.2). The boundary condition (1.3) yields 
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P th) = cnjc -ian,, (ih)j (2.6) 
Here and henceforth, summation over repeated subscripts is understood: between the limits 

from 1 to N for n and from 0 to 3 for j. 
It is important to note that the scattered field representations (2.5) and (2.6) can be 

used equally in the solution of BCP with any point inhomogeneities on the boundary. 

Let us consider the BCC (1.4) for the case of cracks at all points z n,,,. We find 

lim dRg’ (GO) -= lim d'&,' (I, 0) 
x-am*0 3s x-a,,,*0 ass 

+ Lee" jli!ins+j 

The boundary-contact integrals derived here 

diverge for i>2. The procedure for their regularization that occurs systematically for 
the solution of BCP for a homogeneous medium /l-3/ is described in Sect.4. The derivatives of 
the source with respect to the field are expressed by using the elementary identity vW($,,$,) 
= $0’ (O,h)l(h) by the convergent integrals 

%I’ km. 0) Jms 

dz8 
J = y eih(o,n-so) $1’ (Cm A) 

=w’ Ins s 1 (A) 
(ih)'dh 

The convergence here is due to the exponential decrease of the function $r(z,,,h), as 
h-t *m as is easily confirmed by the WKB method*. (*Buldyrev V.S. and Buslayev V.S., 
Sound Propagation in the Ocean, Preprint 45(417). USSR Academy of Sciences, Institute of Radio 
Engineering and Electronics, Moscow, 1984.). 

The BCC (1.4) result in a BCS of 4N linear algebraic equations for 4N coefficients cnj 

The solvability of this system is discussed in Sect.6. 
The complete solution of the original BCP is given by (2.1), (2.5), (2.6) and (3.2). 

We will now consider the procedure for regularizing the integrals (3.1). We under- 
stand4* g' (x, 0) in (1.4)-(1.6) to be the limit as z+o. Then the integrals I&j OL # m) 

result in convergent deformationsof the contour of integration in the upper half-plane h for 

am>a, or the lower half-plane for a,(a, prior to passage to the limit in z. After 
this passage the convergence is due to the decrease in the exponential function exp (ih (a, - 

a,)). 
The integrals Cmj are independent of m. We set Z$mj = Zj*. It is clear that 

zj- = (-l)jz,+. We limit ourselves to regularization of Z,+ and for brevity we omit the 
superscript "plus", below. In the case of a homogeneous medium the regulariaation of analogous 
integrals is performed in two steps. First the contour of integration is deformed into a loop 
enclosing the slit for (h2- k12)% in the upper k half-plane. Then the integral in the whole 
loop is replaced by an integral over one of its edges from the jump in the integrand on the 
slit. Consequently, convergent integrals occur that later reduce to sums of residues at 
poles of the integrand lying in the upper half-planes of a two-sheeted Riemann surface /l/. 
Because of the conservation of the analytic properties of the integrand during passage to a 
stratified medium, with the exception of poles associated with the presence of a wave channel 

(O<z<H) that occur in addition (poles of the integrand are discussed in Sect.5), the 
procedure described here remains applicable. We will just present the result 

ZSptl = ljlniv~(iXl)ap+l R, (4.1) 

Z,, = l/zvF(ih$PR1(ni + 2ln((& + l/m)/kJ) (4.2) 

The quantities RL are determined by the eigenfunctions qr and eigenvalues h, of the 
spectral problem (2.2) and (2.3) 

4 2 q,'(o) 
R, = (Al"--k, )- WI(H) 

{ 

a+/(H.kl) 
ah 

+ -$ I/hle- k12 x (4.3) 

wow, $) 
ah 
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In the case of a homogeneous 
analytically /5/ 

To prove the validity of the 
growing parts from the integrands 
ponents 

half-space, the integrals I, and I, can be evaluated 

I, = TI, I, = 0 (4.4) 

result f4.4) in the case under consideration, we extract the 
of I, and I, and separate the integrals into two cCBltl- 

The integrals in the second components converge for i<T and for odd j because of the 
oddness of the integrand. Evaluation of the first components by residues yields (1.4). 

5. We examine the case of one crack (N = 1) by setting a, = 0 (we omit the sub- 
script n=l below). The BCS (3.2) dissociates into two independent BCS after symmetrization 
and antisymmetrization 

In view of (4.4) the solution of these BCS has the form cg L= Cl = 0, c, = -Jali, and 
cg = -Y,Jl,. 

The exact analytic solution of the original BCP for the case of one crack has thereby 
been constructed. 

We will make an asymptotic investigation of this solution as klz 4 0 (h is fAw2 plabe 
thickness on which D,v and ko4 depend) for the case of a Pekeris waveguide (k(z) = k, o< 
z<H). We will investigate just the scattered field g,. The solutions of the "depth" 
problem $,, and +1 can be expressed in terms of linearly independent solutions $+ and 9_ 
of Eq.(2.2) 

& = exp(_C& - ksn) (5.1) 

Taking t5.1) into account we can rewrite the equation I (A) = 0 (see the second formula 
in (2.5)) in the form 

We introduce the parameter e = (~~~~~~/~. Let s<(1. Then by using elementary pertur- 
bation theory the asymptotic forms of the two series of roots of the dispersion equation (vO = 
Y (kbf-“) can be found 

JJl) N +-h-l (khr’b (v~x)‘~~@~~~, 0 .< 1 < 4 (5.3) 

(5.4) 

The roots ap are at the vertices of a regular pentagon as kh+O, where f&p) 

corresponds to the surface wave process. The roots ?#) are waveguide resonances (there are 
no real waveguide eigenvalues for e<i). The eigenvalues lying on the physical sheet of 
the Riemann surface are represented by dark points in the figure while the open circles are 
those lying on its non-physical sheet, rk (the dashed lines) are slits for (h'-- k12f'i*. 

Let us evaluate the integrals I4 and f@ by residues according to (4.21. Elementary 
calculations show that as ktt+O,t:< 1 only residues at the poles h = A,@) exert any influence 
on the highest terms of the asymptotic forms of these integrals (the poles h = h1t2) are of 
the order (kh)-d, 620, and the residues there are small compared with the residues at the 
poles h = A,(l)). Therefore, the highest terms of the asymptotic forms of the integrals in the 
representation for the scattered field & .agree with the highest terms of analogous integrals 
in the case of a homogeneous medium. Therefore, 
scattered field at the highest order. 

a thin water layer (e<1) is not felt by a 
In particular, the highest term of the asymptotic form 

of a field excited by a plane wave incident on a homogeneous bottom is identical with that 
presented in /l/, 

The nature of the dependence of the layer parameters on the depth is obviously not essen- 
tial here. 

In order to see this we will examine the dispersion Eq.(5.2) whose left-hand side should 
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be replaced by the logarithmic derivative of a certain solution (2.2). For 1. z-7 0 (k) this 
derivative is of the order of one and, therefore, the asymptotic form E+(l) like the asymptotic 
form of the roots of the denominator of the right-hand side are conserved. The roots QZ) 
are of the previous order and the residues therein are not felt by the highest terms of 
and I,. 

J, 

For kli->I there is a certain number L of real waveguide eigenvalues t_h,@)(O ?:l<L) lying 
in the intervals [k,,k] and [-k,-k,] and four series of complex roots 
from the points 

fhl"'(I 2 I>/ L) departing 
h- A-k, towards infinity. The asymptotic form of these roots of number 1 has 

the form of (5.4). The roots h$') are not described by the asymptotic form (5.3). It can 
merely be asserted that I,") turns out to be to the right of k as MI - 0. A numerical 
analysis is necessary in this domain of parameters. 

6. The solvability of the BCS (3.2) and, therefore, 
the theorem on the existence and uniqueness of the sol- 
ution of the BCP (l.l)-(2.4) when the explicitly written 
solution (2.1), (2.5), (2.6) is taken into account, are 
proved in the same way as indicated in /6/. 

We will refine the radiation principle by indicating 
the asymptotic form of the solution at infinity. The 
field is represented in the form of a sum of a surface 
(waveguide) process &and a cylindrical wave gc diverging 
at the bottom whose asymptotic form have the form 

where ai* are the amplitudes of the normal waves propagating in the waveguide from left to 
right from the domain of the plate occupied by the inhomogeneities, and Q, (9) is the radiation 
pattern of a cylindrical wave. 

By using the Green's first formula for the solution U of the homogeneous BCS in the domain 

%,o formed by the arc of the circle S,= (s*+ (z-H)~= R*} at the bottom, the segments 

(s=IW, O<z<N) I and a plate whose inhomogeneities are bypassed by the arcs Sbn= ((z- IQ-I- 
28 y== 62, Z > 0) in the first stage of the proof, the absence of energy-carrying field components 
at infinity is established 

or,* = 0, 1 = OJ, . . . . I,; al (cp) = 0 (6.1) 

The property of orthogonality of the eigenfunctions of the spectral problem (2.2) and 
(2.3) is used to prove this assertion (6,,q is the Kronecker delta) 

Two cases are considered further. 1. The BCS determinant is non-zero. Then a Green's 
function g exists. Applying the Green's second formula to it and the assumed solution of the 
homogeneous problem U, we establish the uniqueness of the solution (the solution of the homo- 
geneous BCP equals zero identically). 2. If the BCS determinant equals zero, we construct 
a field u according to the existing non-zero solution I+,~ of the homogeneous BCS. Evaluating 
the radiation pattern of this solution 

we arrive at a contradiction to (6.11 because not all the constants W equal zero. 
Therefore, a solution of the BCS, and therefore, of the BCP.exists and is unique. 

7. Let a plane wave be incident at an angle 'pc from the bottom. Calculations analogous 
to those performed in the papers mentioned in footnotes 1 and 2 result in the following, ex- 
pression for the effective scattering cross-section of this wave on an infinite plate with 
arbitrary local non-absorbing inhomogeneities, covering the sound channel: 
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The property of normalization of the eigenfunctions of the "depth" problem (6.2) was used 

in deriving (7.1). On the other hand, the scattering diameter is expressed in terms of the 
reflection coefficient 

R (cp) = R- (cp)/R+ (cp), R* = &, (H, k, cos (p) sin cp _C x-*&,’ (H, k, cos (p) 

and the value of the pattern cf, in the direction of the reflected wave 

e = -&k;'Re (R (foe) @ (X - 'PO; %)I (7.2) 

Formulas (7.1) and (7.2) in combination are called the optical theorem can be a check on 
the accuracy of the calculation. 

8. One of the modifications of the procedure for calculating the field g by the formulas 
obtained above is the following: the boundary-value problem (2.2) and (2.3) is replaced by a 
system of mesh equations /7/ 

1p (zi+l) - (2 + (a." --- k? (2,)) G)?k (Zi) + 1p (zi_1) = 0, i = 2, 3, . ., I - 1 (8.f) 

where the mesh spacing d= H;I is selected such that lo-15 nodes Pi = id would arrive per 
period of eigenfunction oscillation. The first and last equations of the mesh system differ 
from (8-i) and take account of the boundary conditions (2.3). After getting rid of the radical 
(h2 - k12)YI in the determinant of this system, we obtain a polynomial whose roots are approxi- 
mately identical with the eigenvalues of the "depth" problem lying on both sheets of the Riemann 
surface. A standard iteration procedure can be used to find these roots. The eigenfunctions 
that are solutions of the mesh system for already known hl are calculated from a trinomial 
recursion formula. To calculate the derivatives alp,’ w, WW. and a&, (H, &)/al, in (4.31, these 
recursion formulas should be differentiated, which will result in an inhomogeneous mesh system 
with the previous matrix. 

The integrals fap are evaluated by means of (4.2). Since the series (4.2) converge 
slowly, a large number of terms must be summed. To accelerate the calculations starting with 
a certain number I*, the asymptotic forms should be summed. 

Comparison of the values of I, and lgt evaluated by means of (4.1), with the known values 
of (4.4) is a check on the accuracy of the calculations. The optical theorem.(7.1) and (7.2) 
is another checking identity. 

If the spacing between the source (+,,.z& the inhomogeneities (a,,,~)), and the point of 
observation (t,z) is large, then the integrals I&j (m=t=& Jnlb.&? can be replaced by sums of 
residues at the real poles h= hl. Consequently, the field g is represented by a sum of 
normal waves propagating in a channel without damping 

The error of such a representation is due to neglecting the contributions of the complex 
poles (Imhl>O) that decrease exponentially with distance, and the contribution of the side 
wave (the integral over the slit) that decreases as 0 (I 5 I-"') f If the distances between 
the plate defects are small, it is necessary to take account of the complex poles and integrals 
of the exponentially decreasing functions over the slit. We note that the inhomogeneities 
between which the spacings are much less than the wavelength in the half-space can still be 
replaced at the stage of formulating the problem of one point inhomogeneity. 
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